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Module 2 
The Simple Regression Model 

 
The Signal-Noise Decomposition 
One of the ideal setups in Statistics occurs when data 
 

y1,…, yn 
 
can be treated as sequence of independent draws from a normal 
distribution with mean µy and standard deviation σy.    
 
This statistical model for such data is denoted by 
 

y1,…, yn  iid  ~ ),( 2
yyN σµ  

 
where iid stands for  “independent and identically distributed”. 
 
Example 

In Stat 603 we saw that the iid normal model was reasonable 
for the 1992-1993 daily returns on GM (see GM92.jmp).  
 
There, based on n = 507 observations, we estimated  
 

µy  by  y  = .00158,   and   σy  by  sy = .0202 
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Somewhat more suggestively, this model can also be written as 
 

yi = µy + εi ,     i = 1,…, n 
ε1,…,εn  iid ~ ),0( 2

yN σ  
 
Notice how the data generating process has two components1: 
 

1) “signal”:  a fixed level µy 
 
2) “noise”: ε1,…,εn  iid mean 0 normal deviations 

 
Although the iid normal model above is not always appropriate, 
it is a special case of a broadly applicable model formulation 
 

 yi =signali + εi,    i = 1,…, n   

ε1,…,εn  iid ~ ),0( 2
εσN  

 
Again, the data generating process has two components: 
 
1)  the signal: signali 
2)  the noise:  ε1,…, εn  iid mean 0 normal deviations 
 
Note the three main properties of the noise ε1,…, εn   
  a) independence 
  b) equal variance 2

εσ  
  c) normally distributed 

————————————————— 
1 The terminology “signal” and “noise” originated in electrical engineering.  The methods we are studying can also 
be used to improve the reception of a TV or radio station.  The goal of engineers is to transmit a clear signal from 
the station, one free of noise.  For us, signal is an underlying structure that we seek to separate from random noise. 
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Although the decomposition  
 

yi =signali + εi 

 
is not explicitly observed, a general strategy for finding such a 
model is based on finding a decomposition of the form 
 

ˆi i iy y e= + ,    i = 1,…, n 
 
where iŷ  estimates signali 
 
and ˆi i ie y y= −   estimates noise ε1,…,εn.  
 
 
 
Support for a particular form for signali is obtained when 
e1,…,en  manifest iid normal behavior. 
 
 
 
Jargon 

 
 nyy ˆ,...,ˆ1  are called the fitted or predicted values 

 
 e1,…,en are called the residuals 
 
 
 
As we shall now see, regression analysis falls exactly into this 
framework. 
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The Simple Regression Model (SRM) 
 
Under this idealized statistical model, the data 

(x1, y1), …, (xn, yn) 

are a realization of 
 

yi =β0 + β1xi + εi ,    i = 1,…, n   
 

ε1,…,εn  iid ~ 2(0, )N εσ  
Pictorially: 
 
 
 
 
 
 
 
 
 
 
As a decomposition of the data into signal & noise,  
the signal here is 
 
 
and the noise here is 
 
 
People also sometimes refer to 1, , nε εK  as the “errors”.2 

————————————————— 
2 You can also think of these errors as coming from all of the other factors that influence the 
response aside from the one that we have chosen to highlight in the simple regression. 
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Think of the SRM as a hypothetical process that could have 
generated the data.   
 
Example 
To get a feel for how the SRM generates data, the file 
Utopia.jmp contains a simulation of pairs 
 

(x1, y1), …, (xn, yn) 
 
from a SRM with3 β0 =   7 ,   β1 =   .5   and  σε =  1 
 
 
 
 
What are the interpretations of β0 + β1x , β0 , β1  and σε  in the 
SRM? 
 
 
 
 
 
 
 
 
 
 
 
β0 , β1  and σε  are the (usually) unknown parameters of the 
SRM.  An objective of regression is to estimate them. 

————————————————— 
3 The simulation is determined by the formulas that define the y and error columns.  Note that it 
is necessary to Unhide the error column to see its formula.  
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Typical Regression Situation 
The general course of a regression analysis includes these steps: 

Figure out for your problem if it makes sense to think of 
one variable as a predictor, and one as a response. 

Observe pairs of data, (x1, y1), …, (xn, yn) 
Plot the data! 
If necessary, transform the data to obtain linear association 

Suspect (or hope) SRM assumptions are justified 

Estimate the “true” regression line 

y  =  β0 + β1x 
 by the LS regression line 

       ŷ  = 0β̂  + 1̂β x 

where 0β̂  and 1̂β  to denote b0 and b1 from Module 1. 
 
WARNING!  The true regression line and the LS regression 
line are different.  DON'T CONFUSE THEM! 
 
Pictorially 
 
 
 
 
 
 
Jargon:  0β̂  and 1̂β  are often referred to as the least squares 
(LS) estimates of β0 and β1. 
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The Fitted Values and the Residuals 
 
The LS regression line decomposes the data into two parts 
 

ˆi i iy y e= +  
where 
 

ˆiy  = 0β̂  + 1̂β xi     and     ˆi i ie y y= −  
 
 
Pictorially 
 
 
 
 
 
 
 
 
Jargon  (again) 
 
 $ , , $y yn1 K  are called the fitted or predicted values 
 
 e1,…, en are called the residuals 
 
 
The following page shows the fitted values and the residuals for 
the Module 1 diamond regression4. 

————————————————— 
4 After executing the Fit Line subcommand, JMP will store the fitted values and residuals in the 
data table by right clicking next to “⎯Linear Fit” and selecting Save Predicteds and Save 
Residuals form the Pop-up menu.  
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Weight Price Predicted Price Residuals Price
0.17 355 372.95 -17.95
0.16 328 335.74 -7.74
0.17 350 372.95 -22.95
0.18 325 410.16 -85.16
0.25 642 670.63 -28.63
0.16 342 335.74 6.26
0.15 322 298.53 23.47
0.19 485 447.37 37.63
0.21 483 521.79 -38.79
0.15 323 298.53 24.47
0.18 462 410.16 51.84
0.28 823 782.26 40.74
0.16 336 335.74 0.26
0.2 498 484.58 13.42

0.23 595 596.21 -1.21
0.29 860 819.47 40.53
0.12 223 186.90 36.10
0.26 663 707.84 -44.84
0.25 750 670.63 79.37
0.27 720 745.05 -25.05
0.18 468 410.16 57.84
0.16 345 335.74 9.26
0.17 352 372.95 -20.95
0.16 332 335.74 -3.74
0.17 353 372.95 -19.95
0.18 438 410.16 27.84
0.17 318 372.95 -54.95
0.18 419 410.16 8.84
0.17 346 372.95 -26.95
0.15 315 298.53 16.47
0.17 350 372.95 -22.95
0.32 918 931.10 -13.10
0.32 919 931.10 -12.10
0.15 298 298.53 -0.53
0.16 339 335.74 3.26
0.16 338 335.74 2.26
0.23 595 596.21 -1.21
0.23 553 596.21 -43.21
0.17 345 372.95 -27.95
0.33 945 968.31 -23.31
0.25 655 670.63 -15.63
0.35 1086 1042.73 43.27
0.18 443 410.16 32.84
0.25 678 670.63 7.37
0.25 675 670.63 4.37
0.15 287 298.53 -11.53
0.26 693 707.84 -14.84
0.15 316 298.53 17.47  

   
Does the decomposition ˆi i iy y e= +   hold here?
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Root Mean Squared Error (RMSE) – An Estimate of σε  
 
Looking at more of the output from the diamond regression, a 
key quantity of interest is the  

 
Root Mean Square Error (RMSE) = 31.84 
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RMSE estimates σε , and is often called the standard deviation 
of the residuals.    It is obtained by the formula 
 

RMSE  = 21 ˆ( )
2 i iy y

n
−

− ∑  
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RMSE2 is the “average” squared deviation between the data and 
the LS regression line (i.e. the variance of the residuals).   
 
We divide by (n − 2) instead of n to compensate for the fact that 
the LS line obtains smaller sum of squared deviations than the 
true regression line5. 
 
 
How does the formula for RMSE compare to the formula for sy, 
the sample standard deviation of y? 
 
 
 
 
 
 
 
 
RMSE measures the dispersion of the residuals around the LS 
regression line.  Why is this value important in the regression? 
 
 
 
 
If the SRM holds, then approximately 
 
 of the data will lie within one RMSE of the LS line 
 
 of the data will lie within two RMSE of the LS line 

————————————————— 
5 The quantity (n − 2) here is sometimes called the degrees of freedom (df) and is often used in 
regression calculations.   
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Model Checking 
Any conclusions drawn from a regression analysis depend on 
the assumption that the SRM is appropriate.   
 
 
Good statistical practice entails using the data to make sure 
there are no gross violations of the SRM. 
 
 
What to look for: 
 

1) Is the relationship between x and y linear? 
 
2) Are there outliers or influential values that distort the 

model fit? 
 
 3)  Do the residuals manifest iid normal behavior? 
      (i.e., independent, constant variance, normal) 
 
 
Three crucial model checks: 
 
1.  A scatterplot of  y  vs  x  should reveal  
 
 
2.  A scatterplot of the Residuals vs x should appear 
 
 
3.  A histogram of the residuals should appear            
and a normal quantile plot of the residuals should appear 
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Example: Checking the Diamond Regression 
 
The scatterplot of Price vs Weight (p 2-9) reveals 
 
 
The scatterplot6 of Residuals vs Weight reveals 
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The histogram and normal quantile plot of the residuals shows 
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————————————————— 
6 After executing the Fit Line subcommand, right click on the triangle next to “⎯Linear Fit” 
and select Plot Residuals from the Pop-up menu to obtain this plot.     
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Anomalies to Look For 
 
Nonlinearity 
 
Can be revealed by the y vs x scatterplot or by the  
Residuals vs x scatterplot 
 
Recall the display.jmp data 
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Remedy:  Transform y and/or x. 
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Autocorrelated Residuals 
 
The file cellular.jmp contains the number of subscribers to 
cellphone service in the US every six months from the end of 
1984 to the end of 1995. 
 
The data is a time series y1,…,yn where yt is the number of 
subscribers at time period t. 
 
A scatterplot of y vs t  (i.e. a time series plot of y) shows 
nonlinear growth in the number of subscribers. 
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By trial and error7, one discovers that the transformation  
y* = y1/4 yields what appears to be an ideal linear relationship. 
 
Thus one might consider fitting a trend model of the form 
 

1/ 4
ty  = β0 + β1t + εt  ,    t = 1,…, n   

 
In this special case of the SRM, t  plays the role of x.  

————————————————— 
7 As described in Lecture 1 of BAR, p 29-38. 
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At first glance the regression of y1/4 on t appears to be 
wonderful. 
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However, the scatterplot of residuals vs t reveals a serious 
problem. 
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What SRM assumption has been violated? 
 
 
 
Such meandering residuals are often called autocorrelated 
because et-1 and et  appear correlated. 
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Expanding Residuals 
 
The file cleaning1.jmp contains the number of crews (Crews) 
and the number of rooms cleaned (RoomsClean) for 53 teams 
of building maintenance workers. 
 

0
10
20
30
40
50
60
70
80

R
oo

m
sC

le
an

0 5 10 15
Crews

 
 

-20
-10

0
10
20

R
es

id
ua

l

0 5 10 15
Crews

 
 
Which assumption of the SRM is violated here? 
 
 
This violation has only a minor effect on the estimation of β0 
and β1.  However, it does affect the prediction statements to be 
discussed in Module 3. 
 
Remedy:  Transform y or use weighted least squares (p 57-60) 
instead of least squares.
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Outliers and Influential Points 
 
Main idea: outliers are unusual points.  They should always be 
investigated.  If warranted, they should be excluded. 
 
The file direct.jmp contains the level of sales ($1000’s) and the 
number of direct mail recipients (1000’s) for 10 different 
mailings of a catalog.   
 
Each catalog costs $1.50 and the company would like to assess 
its marginal profit increase per catalog. 
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The LS line here is  

Sales = 39.58 + 1.73 Direct 
with RMSE = 85.7 
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Investigation of the unusual point above reveals that that 
mailing coincided with a large inventory sale.   
 
Repeating the regression with the point excluded yields 
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The LS line here is  

Sales = 5.78 + 1.98 Direct 
with RMSE = 8.8 
 
What changed? 
 
 
Should the outlier be excluded? 
 
 
What is the company’s estimated marginal profit per catalog?
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Another Outlier Example 
The file phila.jmp contains the average prices of houses sold in 
the prior year and crime rates for 110 Pennsylvania 
communities in and near Philadelphia in April 1996.   
 
To gauge the relationship between house prices and crime rates, 
one might consider the following regression 
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The LS line here is  

House Price = 176629 – 577 Crime Rate 
with RMSE = 84325.  Interpretation? 
 
 
The unusual point is8  

————————————————— 
8 Point labels are very helpful when it comes to identifying outliers.  The default point label is 
the row number in the JMP data set.  You can assign a variable to be the label as well. 
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Repeating the regression with the unusual point excluded yields 
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The LS line here is  

House Price = 225234 – 2289 Crime Rate 
with RMSE = 78861.  How does this fit change the implications 
of the previous model? 
 
 
Note how one point can drastically influence a regression.   
Should this point be excluded? 
 
 
How does the unusual point affect the fit here, compared to the 
effect of the outlier in the previous direct mail regression? 
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Don't forget to plot the data! 
 
Before fitting a regression, it is crucial to first plot the data. 
 
Example:  Which of the following four data sets seems 
compatible with the SRM assumptions? 
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Which of the previous scatter plots yields the following regression 
output? 
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Take-Away Summary 
The simple regression model (SRM) is the basis for 
inference from regression with one predictor. In this 
model, the observed data 
 

(x1, y1), …, (xn, yn) 
 
are assumed to be a realization of a “signal+noise” data 
generating process that ideally has the form 
 

yi =β0 + β1xi + εi ,    i = 1,…, n   
 

ε1,…,εn  iid ~ 2(0, )N εσ  
 
Important diagnostics to keep in mind are plots that 
check for  

Outliers 
Linearity 
Independence when the data are ordered 
(particularly when the data are a time series) 
Equal variance 
Normality  

 
Next Module 
The SRM is the basis for confidence intervals, prediction 
intervals, and hypothesis tests. 


